Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Fungi (Basel) ; 8(3)2022 Mar 19.
Article in English | MEDLINE | ID: covidwho-1760690

ABSTRACT

Most cases of invasive aspergillosis are caused by Aspergillus fumigatus, whose conidia are ubiquitous in the environment. Additionally, in indoor environments, such as houses or hospitals, conidia are frequently detected too. Hospital-acquired aspergillosis is usually associated with airborne fungal contamination of the hospital air, especially after building construction events. A. fumigatus strain typing can fulfill many needs both in clinical settings and otherwise. The high incidence of aspergillosis in COVID patients from our hospital, made us wonder if they were hospital-acquired aspergillosis. The purpose of this study was to evaluate whether the hospital environment was the source of aspergillosis infection in CAPA patients, admitted to the Hospital Universitario Central de Asturias, during the first and second wave of the COVID-19 pandemic, or whether it was community-acquired aspergillosis before admission. During 2020, sixty-nine A. fumigatus strains were collected for this study: 59 were clinical isolates from 28 COVID-19 patients, and 10 strains were environmentally isolated from seven hospital rooms and intensive care units. A diagnosis of pulmonary aspergillosis was based on the ECCM/ISHAM criteria. Strains were genotyped by PCR amplification and sequencing of a panel of four hypervariable tandem repeats within exons of surface protein coding genes (TRESPERG). A total of seven genotypes among the 10 environmental strains and 28 genotypes among the 59 clinical strains were identified. Genotyping revealed that only one environmental A. fumigatus from UCI 5 (box 54) isolated in October (30 October 2020) and one A. fumigatus isolated from a COVID-19 patient admitted in Pneumology (Room 532-B) in November (24 November 2020) had the same genotype, but there was a significant difference in time and location. There was also no relationship in time and location between similar A. fumigatus genotypes of patients. The global A. fumigatus, environmental and clinical isolates, showed a wide diversity of genotypes. To our knowledge, this is the first study monitoring and genotyping A. fumigatus isolates obtained from hospital air and COVID-19 patients, admitted with aspergillosis, during one year. Our work shows that patients do not acquire A. fumigatus in the hospital. This proves that COVID-associated aspergillosis in our hospital is not a nosocomial infection, but supports the hypothesis of "community aspergillosis" acquisition outside the hospital, having the home environment (pandemic period at home) as the main suspected focus of infection.

2.
J Infect Public Health ; 14(1): 50-52, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065349

ABSTRACT

The impact of secondary infections by multidrug-resistant bacteria in COVID-19- infected patients has yet to be evaluated. Here, we report the clinical and molecular features of an outbreak of seven patients carrying CTX-M-15- and OXA-48-producing Klebsiella pneumoniae belonging to ST326 during COVID-19 pandemic in an ICU in northern Spain. Those patients were admitted to beds close to each other, two of them developed ventilator-associated pneumonia (VAP), one exhibited primary bacteremia and the remaining four were considered to be colonized. None of them was colonized prior to admission to the ICU an all, except one of those who developed VAP, were discharged. Hydroxychloroquine and lopinavir/ritonavir were administered to all of them as COVID-19 therapy and additionally, three of them received tocilizumab and corticosteroids, respectively. Reusing of personal protective equipment due to its initial shortage, relaxation in infection control measures and negative-pressure air in ICU rooms recommended for the protection of health care workers (HCWs), could have contributed to this outbreak. Maximization of infection control measures is essential to avoid secondary infections by MDR bacteria in COVID-infected patients.


Subject(s)
COVID-19/complications , Cross Infection/diagnosis , Klebsiella Infections/diagnosis , Klebsiella pneumoniae/metabolism , SARS-CoV-2 , Aged , Cross Infection/complications , Cross Infection/drug therapy , Drug Resistance, Multiple, Bacterial , Female , Humans , Intensive Care Units , Klebsiella Infections/complications , Klebsiella Infections/drug therapy , Male , Spain , beta-Lactamases/metabolism
3.
Intensive Care Med Exp ; 8(1): 68, 2020 Nov 23.
Article in English | MEDLINE | ID: covidwho-940038

ABSTRACT

BACKGROUND: Intensive care unit workers are at high risk of acquiring COVID-19 infection, especially when performing invasive techniques and certain procedures that generate aerosols (< 5 µm). Therefore, one of the objectives of the health systems should implement safety practices to minimize the risk of contagion among these health professionals. Monitoring environmental contamination of SARS-CoV-2 may help to determine the potential of the environment as a transmission medium in an area highly exposed to SARS-CoV-2, such as an intensive care unit. The objective of the study was to analyze the environmental contamination by SARS-CoV-2 on surfaces collected in an intensive care unit, which is dedicated exclusively to the care of patients with COVID-19 and equipped with negative pressure of - 10 Pa and an air change rate of 20 cycles per hour. Furthermore, all ICU workers were tested for COVID-19 by quantitative RT-PCR and ELISA methods. RESULTS: A total of 102 samples (72 collected with pre-moistened swabs used for collection of nasopharyngeal exudates and 30 with moistened wipes used in the environmental microbiological control of the food industry) were obtained from ventilators, monitors, perfusion pumps, bed rails, lab benches, containers of personal protective equipment, computer keyboards and mice, telephones, workers' shoes, floor, and other areas of close contact with COVID-19 patients and healthcare professionals who cared for them. The analysis by quantitative RT-PCR showed no detection of SARS-CoV-2 genome in environmental samples collected by any of the two methods described. Furthermore, none of the 237 ICU workers was infected by the virus. CONCLUSIONS: Presence of SARS-CoV-2 on the ICU surfaces could not be determined supporting that a strict cleaning protocol with sodium hypochlorite, a high air change rate, and a negative pressure in the ICU are effective in preventing environmental contamination. These facts together with the protection measures used could also explain the absence of contagion among staff inside ICUs.

SELECTION OF CITATIONS
SEARCH DETAIL